Core Transport Reduction in Tokamak Plasmas with Modified Magnetic Shear
نویسندگان
چکیده
Spontaneous improvements of plasma confinement during auxiliary heating have been observed in many tokamaks when the q profile has been modified from its normal resistive equilibrium so that q > 1 and the magnetic shear is reduced or reversed in a region near the magnetic axis. The effects on the overall plasma confinement result from the formation in the plasma interior of transport barriers, regions where the thermal and particle transport coefficients are substantially reduced. These internal barriers are sometimes tied to unique magnetic surfaces, such as the surface where the shear reverses. The reduction in transport appears to result from the suppression of turbulence by sheared plasma flow, which has now been measured in TFTR. Extensions of the theory for turbulence suppression show that this underlying paradigm may also explain other regimes of improved core confinement. The excitement generated by these discoveries must be tempered by the realization that transport and stability to pressure-driven MHD instabilities are intimately linked in these plasmas through the bootstrap current and the effect of the resulting current profile on the transport. Thus the development of control tools and strategies is essential if these improved regimes of confinement are to be exploited to improve the prospects for fusion energy production. PACS numbers: 52.55.Fa, 52.55.Dy, 52.55.-s, 52.35.Ra * email contact: [email protected]
منابع مشابه
EX/P5-11 Impact of Magnetic Shear Modification on Confinement and Turbulent Fluctuations in LHD Plasmas
For the comprehensive understandings of transport phenomena in toroidal confinement systems and improvement of the predictive capability of burning plasmas in ITER, the impact of magnetic shear has been extensively investigated in the Large Helical Device (LHD) for comparison with tokamaks. Consequently, it was heuristically documented that the pronounced effect of magnetic shear, which has bee...
متن کاملMomentum injection in tokamak plasmas and transitions to reduced transport.
The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. Th...
متن کاملPlasma Rotation and Transport in the MAST Spherical Tokamak
The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak (ST) plasmas. The roles of E×B flow shear, q-profile (magnetic shear) and MHD activity in their formation and evolution are studied using data from high-resolution kineticand q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels fo...
متن کاملDynamics of ion internal transport barrier in LHD heliotron and JT-60U tokamak plasmas
Dynamics of ion internal transport barrier (ITB) formation and impurity transport both in the Large Helical Device (LHD) heliotron and JT-60U tokamak are described. Significant differences between heliotron and tokamak plasmas are observed. The location of the ITB moves outward during the ITB formation regardless of the sign of magnetic shear in JT-60U and the ITB becomes more localized in the ...
متن کاملTurbulence spreading as a non-local mechanism of global confinement degradation and ion temperature profile stiffness
A new non-local mechanism of the global confinement degradation and ion temperature profile stiffness is proposed based on the results of global gyrokinetic simulations. We find that turbulence spreading into a marginally stable zone can increase turbulent transport to a level exceeding the predictions of the local theories. Also, we present the first quantification of the parametric dependence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998